## Optical Fiber Drawing and Czochralski Crystal Growing





# An Optical Fiber Coating Applicator



# **Chemical Vapor Deposition**



- Chemical Transformations and Deposition at Micro/Nanoscale
- Boundary Conditions and System at Macro/Engineering Scale
- Desire High Deposition Rates, with Uniform, High Quality, Film
- Minimum Loss of Reacting Gases



## **Chemical Vapor Deposition**



#### Desire High Deposition Rates, with Uniform, High Quality, Film

RUTGERS School of Engineering

## Industrial CVD Reactor for Gallium Nitride (GaN)



## **Analysis of Flow Field**





Factors – gas flow rate, pressure, wafer carrier rotation rate, wafer carrier temperature Results - symmetric, laminar flow field



### Heat Rejection from a Power Plant to a Lake and a Cooling Tower





#### Environmental Effect of Thermal Discharge to a Water Body



Temperature

profile

 $T_h$ 

Hot water

Intake water

Air flow

Cooled

water

(b)

re

Outfall

0 Pump

Intake

Average flow

Lake

(a)



Relatively small temperature changes Effect on natural cycle Effect on transport processes Effect on bio-organisms RUTG

School of Engineering

#### Effects of Heat Rejection from a Power Plant to a Lake



## **Energy Storage as Sensible Heat**





### **Schematic of an Open-Loop Thermosyphon (the Aquifer)**



From Torrance (1979)



# Numerical Modeling of Air Cooled Electronic System



$$\begin{aligned} \nabla \cdot \vec{V} &= 0 \\ \frac{\partial \vec{V}}{\partial \tau} + \vec{V} \cdot \nabla \vec{V} &= -\nabla P + \frac{1}{Re} \nabla^2 \vec{V} - \frac{Gr}{Re^2} \theta \vec{g} \\ \frac{\partial \theta}{\partial \tau} + \vec{V} \cdot \nabla \theta &= \frac{1}{RePr} \nabla^2 \theta \end{aligned}$$







#### Liquid Cooling System



### Microchannel Heat Sinks: Different Scales in Different Components



### Schematic of Straight and U-Shaped Microchannels



School of Engineering

# A Typical Data Center





## Three-Dimensional CFD Data Center Model





#### Temperature Distribution in the Data Center Room with 50% Utilization



(a) A and C racks are operating, flow rate 4650CFM (b) A and C racks are operating, flow rate 5650 (c) A and D racks are operating, flow rate 4650CFM (d) A and B racks are operating, flow rate 4650CFM



## **Temperature Inversion**









## **Temperature Inversion**



© 1998 Wadsworth Publishing Company/ITP



## **Single- and Twin-Screw Polymer**



#### Schematic of twin-screw geometries



Tangential (finite gap between screws)

Schematic of a single screw with shallow rectangular channel



Schematic of a single screw with curved channel





Self-wiping (no gap between screws)

Cross Sections





RS Igineering

B-B

## Sketch of Single-Screw Polymer Extruder





## **Twin-Screw Food Extruder**



- Feed Hopper
- Rotating Screw
- Extruder Channel
- Heating/Cooling Arrangement
- Die



### Safety Issues with Fires, Explosions and Other Accidents







# A Typical Room Fire





## Flow in an Enclosure with a Single Horizontal Vent





## Flows in a Vertical Elevator Shaft and in a Stairwell



RUTGERS School of Engineering

From Marshall (1986)

# The Optimization Problem

#### MAXIMIZE

- Efficiency/Effectiveness
- Heat transfer rate
- Product quality: Uniformity, purity
- Productivity: Rate of production, speed

#### **MINIMIZE**

- Energy and material losses
- Pressure drop
- Entropy generation
- Defects: Voids, impurities
- Costs: Capital, operating costs

