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An Optical Fiber Coating
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Chemical Vapor Deposition
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Chemical Vapor Deposition
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Industrial CVD Reactor for
* Gallium Nitride (GaN)
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Analysis of Flow Field
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Heat Rejection from a Power
Plant to a Lake and a Cooling Tower
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Environmental Effect of Thermal
Discharge to a Water Body
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Effects of Heat Rejection from

Power Plant to a Lake
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Energy Storage as Sensible Heat
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Schematic of an Open-Loop
i Thermosyphon (the Aquifer)
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Numerical Modeling of Air
i Cooled Electronic System
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_|Experimental Systems
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Microchannel Heat Sinks: Different
Scales in Different Components
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Schematic of Straight and
U-Shaped Microchannels
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i A Typical Data Center
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Center Model

* Three-Dimensional CFD Data

"N Hot Air

o8 Mis-Circulated

Mixed wf Cold
Return | HOT S— \

NSLE  |>HotAlr>>|* Front ** : ‘ : L F .

C ’ . : : P
R |
A 4\
C ok : AN E

COLD NSO onny JI Sob Ak
Raised floor b t

RUTGERS

School of Engineering



Temperature Distribution in the Data
Center Room with 50% Utilization
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Temperature Inversion
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Temperature “Inversion”
An atmospheric layer where

the temperature decrease with height
is much less than normal
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Single- and Twin-Screw Polymer
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Sketch of Single-Screw

Polymer Extruder
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Twin-Screw Food Extruder
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Safety Issues with Fires, Explosions
and Other Accidents
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A Typical Room Fire
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Flow in an Enclosure with a Single
Horizontal Vent
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Flows in a Vertical Elevator
Shaft and in a Stairwell
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The Optimization Problem

MAXIMIZE
Efficiency/Effectiveness
Heat transfer rate
Product quality: Uniformity, purity

Productivity: Rate of production, speed

MINIMIZE
Energy and material losses
Pressure drop
Entropy generation
Defects: Voids, impurities
Costs: Capital, operating costs RUTGERS

School of Engineering



